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Accurate potential energy models are necessary for reliable atomistic simulations of chemical phe-
nomena. In the realm of biomolecular modeling, large systems like proteins comprise very many
noncovalent interactions (NCIs) that can contribute to the protein’s stability and structure. This work
presents two high-quality chemical databases of common fragment interactions in biomolecular sys-
tems as extracted from high-resolution Protein DataBank crystal structures: 3380 sidechain-sidechain
interactions and 100 backbone-backbone interactions that inaugurate the BioFragment Database
(BFDb). Absolute interaction energies are generated with a computationally tractable explicitly corre-
lated coupled cluster with perturbative triples [CCSD(T)-F12] “silver standard” (0.05 kcal/mol average
error) for NCI that demands only a fraction of the cost of the conventional “gold standard,” CCSD(T)
at the complete basis set limit. By sampling extensively from biological environments, BFDb spans
the natural diversity of protein NCI motifs and orientations. In addition to supplying a thorough assess-
ment for lower scaling force-field (2), semi-empirical (3), density functional (244), and wavefunction
(45) methods (comprising >1M interaction energies), BFDb provides interactive tools for running
and manipulating the resulting large datasets and offers a valuable resource for potential energy model
development and validation. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.5001028]

I. INTRODUCTION

Computational chemical models are being more routinely
applied to large biological systems with the aid of increased
computational resources, specialized hardware, and efficient
algorithms. Examples of modeling successes in the recent
literature are quite exciting: long-time scale molecular dynam-
ics (MD) simulations of fast-folding proteins have yielded
insights into how some proteins fold,1,2 Markov state models
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have been used to construct models of protein dynamics from
parallel simulations distributed through a crowd-sourced net-
work of personal computers and gaming consoles,3,4 human
brain power itself was utilized to help solve protein folding
problems through online video games,5 free energy pertur-
bation calculations were used to guide the design of some
of the most potent known non-nucleoside HIV reverse tran-
scriptase inhibitors,6 MD simulations of protein-ligand sys-
tems have been used to reconstruct the complete dynamics of
the protein-ligand binding process,7,8 and semiempirical,9,10

density functional,11,12 and ab initio13–16 quantum chemical
methods are being more routinely applied to larger and larger
systems, particularly to elucidate noncovalent interactions17

(NCIs).
While reports such as these are very encouraging, a dif-

ferent perspective can be obtained from analyzing the results
of blind prediction challenges. These benchmarks are impor-
tant for measuring our modeling abilities without the influ-
ences of retrospective ad hoc corrections or pressure to pub-
lish positive results. For example, in last year’s SAMPL5
competition, poor correlation and high magnitudes of error
were present in a variety of methods used to make blind
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predictions of host-guest complexation free energies.18 Sim-
ilarly the CSAR 2014 exercise, in which participants were
asked to predict relative or absolute binding affinities of given
ligand poses in protein receptor structures, showed that it is still
very difficult to accurately score ligands across different pro-
tein targets.19 Analogously in the protein folding community,
results from the Critical Assessment of Protein Structure Pre-
diction (CASP) experiments show that current methodologies
are only very newly able to make practicable inter-residue con-
tact predictions.20,21 Thus it seems that our ability to routinely
make reliable predictions concerning biomolecular systems
still needs to be developed further.

The molecular mechanics methods that are the mainstays
of protein dynamics modeling are very fast and tuned to their
task. But difficulties can arise for new chemical environments
or be masked by seemingly good collective results. For exam-
ple, fragmenting the 1HSG-indinavir docking site into contact
pairs yields errors whose sum could easily overwhelm the mag-
nitude of the overall binding energy.22 In contrast, ab initio
approaches that are the mainstay of small molecule modeling
are far more robust for new regions of chemical space but can
scarcely approach the thousand-atom scale.

A necessary resource for creating, optimizing, and vali-
dating potential energy models is a large dataset of biologically
relevant fragment interactions and their associated reference
interaction energies (IEs). Several such databases exist,22–26

though they most commonly are organic rather than biologi-
cal in origin and include only dozens of systems, and many
are available through user-friendly web portals.27,28 Several
of them utilize “gold standard” quantum chemical methods
such as coupled-cluster singles and doubles with perturbative
triples, CCSD(T),29 at the complete basis set (CBS) limit to
estimate reference energies at equilibrium geometries. Non-
equilibrium geometries, which are often encountered in com-
posite biomolecular systems, are less often included in bench-
mark databases. Some geometry variation was introduced with
the S22x5 and S66x8 datasets, for which previously opti-
mized fragments were translated along their intermolecular
axes,25,30 with S66a8, which systematically scanned inter-
fragment angles,31 with NBC10 and HBC6, which provided
frozen momomers and relaxed potential energy curves,24,32

and with ACHC, which examined nucleobase pair degrees
of freedom.33 Hobza and co-workers recently assembled a
database of 4014 protein-nucleic acid complexes from the
Protein DataBank (PDB) and analyzed them by contact; how-
ever, that work used B3LYP-D3/def2-TZVPP as a reference
for molecular mechanics.34 Those authors also collected 272
sidechain and nucleic acid contacts that they benchmarked
at CCSD(T)/[aTQZ; δ:aDZ].35,36 Collections of databases
have also been assembled, such as by Goerigk and Grimme37

(GMTKN30) and by Mardirossian and Head-Gordon.38 As the
cost of quantum chemical computations has diminished, even
for reference-quality methods, the quantity that comprises a
large-data study has grown commensurately, even an order of
magnitude from Ref. 39 to the present work. At this level, data
management and indexing are just as important as generating
calculations.

In order to provide a large, diverse, and more complete
dataset of biologically relevant bimolecular fragments and

their interaction energies, we have begun the construction of
the BioFragment Database (BFDb). We have selected high-
resolution protein structures from the PDB and fragmented
them with in-house code to produce a very large (≈104) set
of biomolecular fragment complexes. The fragments are clus-
tered into sets depending on their origin (e.g., backbone or
sidechain) and interaction type (e.g., nonpolar or anionic).
The resulting sets are analyzed in terms of gas-phase abso-
lute electronic interaction energy with several potential mod-
els, including force fields (FFs), semiempirical (SE) methods,
density functional theory (DFT), wavefunction (WFN) meth-
ods, and a benchmark-quality reference approximating the
CCSD(T)/CBS gold-standard model. The database is hosted
online (accessible via http://vergil.chemistry.gatech.edu/bfdb)
in order to provide reference results for potential energy
model development, validation, and error estimation methods.
Herein is described the construction of BFDb, general trends
observed, and example usage.

II. COMPUTATIONAL METHODS
A. Construction of BFDb

Initial protein structures were hand-selected from the PDB
according to specific criteria: (i) no nonstandard amino acid
residues, (ii) no bound ligand, nucleic acid, or metal, and (iii)
crystal resolution better than 2 Å. This resulted in a set of
47 proteins, which had a range of crystal structure resolu-
tion from 0.62 to 2.0 Å and a range of chain lengths from 9
to 333. The selected PDBIDs are as follows: 1BN6, 1DF4,
1G9W, 1LU4, 1NG6, 1R7J, 1UCS, 1UKF, 1YU5, 1YZM,
1ZVA, 2BV9, 2BVV, 2ESK, 2JLJ, 2PMR, 2VQ4, 2WJ5,
2WLW, 2WWE, 2X4L, 2X5Y, 2XGV, 3A2Z, 3A7L, 3DVW,
3EAZ, 3EY6, 3HNX, 3I35, 3ICH, 3JQU, 3JVE, 3K0M, 3K0N,
3KB5, 3KSN, 3KZD, 3LAA, 3M9J, 3MSI, 3N11, 3NE0,
3NGP, 3NR5, 3O1Z, and 3O3T. The set of 47 protein structures
was processed with LEAP in AMBER.40 Water molecules
were removed, hydrogen atoms were added, and the pro-
teins were energy minimized with ff99SB41 in a general-
ized Born implicit solvent model42 with tight restraints (force
constant = 1000 kcal/mol Å2) on non-hydrogen atoms. The
relaxed structures were then processed by our fragmentation
code.

The fragmentation algorithm is based on detected
intramolecular interactions. First, noncovalent interactions are
detected by measuring distances between heavy atoms from
different amino acid residues. A threshold of 4 Å is set for
detecting nonpolar interactions and 3.5 Å for polar interac-
tions. Corresponding atom pairs within these distances are
chosen and labeled as “starters” for the program to initial-
ize each fragment. The program searches for atoms adjacent
to every starter and labels them as “seekers.” When all of the
seekers are selected, a new round of searching starts in which
atoms adjacent to previous seekers are regarded as new seek-
ers. The searching procedure ends only if (i) the seeker is a
sp3-hybridized carbon atom, (ii) the seeker is a terminal atom,
or (iii) all adjacent atoms to the current seeker have already
been chosen. Finally, starters and seekers for both interacting
moieties are chosen as members of a fragment pair. Hence,
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this fragmentation program keeps all interacting atoms and
cuts protein molecules at the nearest non-interacting sp3 car-
bons. For example, a particular histidine and aspartic acid con-
tact becomes 4-methylimidazole and formate ion fragments,
while an isoleucine and cysteine contact becomes ethane and
ethanethiol fragments. After fragmentation, hydrogen atoms
are added to the terminal sp3 carbons to replace the cut atoms.
Each hydrogen atom is positioned according to the position
vector to the cut atom and the resulting C–H bond length set to
1.1 Å. All modeling and quantum chemical methods employed
these geometries without further optimization or adjustment to
hydrogen positions.

The fragmentation procedure was applied to the set
of 47 proteins, which resulted in an unfiltered dataset of
10 972 biomolecular fragment interactions observed in pro-
tein crystal structures. The set was divided into 4640 interac-
tions between protein backbone moieties (e.g., from α-helices
and β-sheets), 2774 backbone-sidechain interactions (BBI),
and 3558 sidechain-sidechain interactions. The distribution
of various interacting sidechains is shown as a heatmap in
Fig. 1(a), with the increased frequency for cation-anion and
nonpolar-nonpolar contacts reflecting natural abundance. The
size distribution of sidechain-sidechain complexes from 12 to
41 atoms is shown as a histogram in Fig. 1(b). Most of the
backbone-backbone type interactions (uniformly 24 atoms in
size) were the same dimer complexes in different geometries
[see insets of Fig. 2(d) for representatives of the two bind-
ing motifs], so from this group, 100 were randomly selected
to become the set of backbone-backbone interactions called
BBI. 3380 of the sidechain-sidechain fragments were collected
into the dataset SSI.43 A selection of the sidechain-backbone
interactions makes up the dataset SBI. Table I summarizes the
available datasets.

Truly high quality estimates of the complete basis set
limit of gold standard CCSD(T) for NCI can be achieved
using focal point estimates based on basis set extrapolations of

second-order Møller–Plesset perturbation theory (MP2) and a
[CCSD(T) � MP2] correction evaluated in at least a triple-ζ
basis set augmented by diffuse functions. Benchmarks of this
quality or better have been evaluated for several databases of
noncovalent interactions, including HSG,22 S22,46 NBC10,24

and HBC6.32,44 The high-quality reference energies available
for the 345 bimolecular complex geometries in those four
databases enable wavefunction methods with an excellent bal-
ance between error and computational cost to be identified.47

These are designated “silver” and “bronze” standards, and their
comparison with gold is shown in Fig. 3. The DW-CCSD(T**)-
F12 method of Marshall and Sherrill48 is employed with the
aug-cc-pV(D+d)Z basis set as the silver standard, achiev-
ing mean absolute error (MAE) among the four databases
of 0.06 kcal/mol while remaining computationally tractable
for a nucleobase pair on a typical workstation. For orienta-
tion, levels of theory such as MP2/aug-cc-pV5Z, CCSD(T)/
(heavy-)aug-cc-pVTZ, and B3LYP-D3/aug-cc-pVTZ yield
MAE of 0.35–0.59 kcal/mol, again with respect to the
databases and gold standard reference described above. By
employing an explicitly correlated and dispersion-weighted
methodology, DW-CCSD(T**)-F12/aug-cc-pV(D+d)Z suc-
ceeds for all broad classes of NCI. MP2C-F12/aug-cc-pVDZ
is designated as the bronze standard. This approach corrects
the MP2-F12 interaction energy with a coupled dispersion term
derived from TDDFT and thus provides quite accurate interac-
tion energies (IEs) for dispersion-dominated systems, though
errors for hydrogen-bonding average≈0.2 kcal/mol. Full tech-
nical details associated with computing reference IE can be
found in Ref. 47.

B. Computational and graphical details

DFT and wavefunction methods were evaluated with
the correlation-consistent basis sets of Dunning, augmented
by diffuse functions on all atoms.49,50 These are notated as

FIG. 1. Composition of the SSI database. (a) The number of intermolecular contacts by amino acid as a heatmap, (b) the size of interacting complex as a
histogram, and (c) the nature of intermolecular contacts by amino acid as presented by plotting each database member individually and coloring it according to
SAPT2+/aug-cc-pVDZ decomposition.
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FIG. 2. SAPT interaction energy decomposition of the four BFDb databases. The relationship between the attractive components—electrostatics, dispersion,
and induction—of a SAPT analysis of each member of (a) HSG, (b) UBQ, (c) SSI, and (d) BBI is plotted on a ternary diagram, where proximity to a vertex
indicates an accordant fraction of attraction which is due to that component. Database members are colored to differentiate binding motif: hydrogen-bonded
(red), mixed-influence (green), and dispersion-dominated (blue). The shaded upper triangle contains complexes supporting a repulsive electrostatics component.
Comparison to scanned-coordinate-sampling database S22x5 shown in (e).

aug-cc-pVDZ (aDZ), aug-cc-pVTZ (aTZ), and aug-cc-pVQZ
(aQZ) throughout. Occasionally, results for unaugmented
basis sets such as cc-pVQZ (QZ) and def2-QZVP (QZVP)51

are also reported. Reference interaction energies for DW-
CCSD(T**)-F12 employed the modified aug-cc-pV(D+d)Z52

basis to better treat sulfur-containing residues. All interac-
tion energies were computed using the counterpoise (CP)
correction scheme of Boys and Bernardi,53 unless explic-
itly stated otherwise as unCP. Density fitting was employed
wherever possible. For wavefunction calculations, CCSD(T)-
F12,54 MP2,55 and MP2C56,57 (the TDDFT and MP2 parts)
were performed within Molpro58 2009.1 and 2010.1; MP2,55

SAPT0 (which also goes into MP2C interaction energies),
and SAPT2+59 have been accessed through the quantum
chemistry code Psi4.60 Details of computational methodology
stated in Refs. 47 (WFN) and 61 (SAPT) also apply to this
work unless contradicted; this includes levels of SAPT the-
ory, MP2 spin-component-scaling (SCS) variants, auxiliary
basis sets for density fitting, triples scaling in F12 computa-
tions, and equations for basis set extrapolations36,62 and focal
point analysis. DFT computations were performed in Psi4
(PBE,63 BP86,64,65 BLYP,64,66 B97,67 PBE0,68,69 B3LYP,70,71

M05-2X,72 LC-ωPBE,73 ωB97X-D,74 and B2PLYP;75

density-fitted) and Q-Chem76 4.3 (ωB97X-V77 and ωB97M-
V38) employing a Lebedev grid with 100 radial and 302
angular points and the SG-1 grid78 where relevant for VV10.
Following developer recommendations for best ωB97M-V
performance, a (99,590) (BBI and SSI500) or (75,590)
(for remainder of SSI) primary grid was used. DFT dis-
persion corrections D2,67 D3 (zero-damping),79 D3(BJ),80

and revised D3M and D3M(BJ)39 were accessed through
external program dftd3.81 The PBEh-3c method82 was run in
Psi4 and by design uses basis set def2-mSVP and no explicit
counterpoise correction (an effective geometrical counterpoise
correction (gCP) is applied among the three corrections of
“3c”). The performance of a method and basis set (together, a
theoretical model chemistry83) for a given database is evalu-
ated by comparing the interaction energy (always in kcal/mol)
for each constituent system to that of its reference CBS
value and is summarized by the quantity mean absolute error
(MAE= 1

n

∑n
sys |METHODsys −REFsys |).

Fragment-specific CHARMM atom types, bonded param-
eters, and charges were assigned using version 1.0.0 of
the CHARMM General Force Field (CGenFF) program.84,85

TABLE I. Databases of the BFDb.

Database Source Size Reference level Citation

HSG HIV-II protease/indinavir (PDBID:1HSG) 21 Gold 22 and 44
UBQ Ubiquitin (PDBID:1UBQ) 94 UBQREFa 45
BBI Backbone-backbone (all PDB) 100 Silver This work
SSI Sidechain-sidechain (all PDB) 3380 Silver This work
SBIb Sidechain-backbone (all PDB) 2774

aUBQREF comprises a combination of MP2/CBS estimates from aug-cc-pVTZ and aug-cc-pVQZ basis set extrapolation and
CCSD(T)/CBS estimations for aromatic complexes.
bSBI not included in this work.
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FIG. 3. Levels of reference interaction energy. The performance of silver and
bronze standards is shown for 121 bimolecular complexes (from S22, NBC10,
HBC6, and HSG databases) for which gold standard reference is available.
Errors for individual complexes are presented as thread plots, discussed in
the penultimate paragraph of Sec. II B, and the mean absolute error summary
statistic is to the right in kcal/mol.

Vacuum interaction energies were calculated with CHARMM
version 39b2,86 reading in the aforementioned fragment-
specific parameters on top of version 3.0.1 of the CHARMM
general force field.87,88 No optimization was performed on the
fragment pair for this purpose, i.e., CHARMM’s INTEraction
command was applied directly to the PDB geometry, with the
distance cutoffs for all nonbonded interactions set to 997 Å in
order to ensure recovery of the full interaction energy. GAFF
results were generated with Amber,40 while semi-empirical
methods Austin Model 1 (AM1)89 and Parameterized Model
6 with empirical corrections for dispersion and hydrogen-
bonding interactions and 2nd-generation (PM6-DH2)90 were
run in MOPAC2009.91

While summary statistics are valuable, a model chemistry
can be more completely assessed by a visual representation
of errors from all database members. Results for several of
the best methods examined in this work are illustrated by

“thread” and “Iowa” plots in, respectively, Tables II–IV (right-
most column) and Figs. 4 and 5. The conventions for these
graphs are outlined here. For thread plots, each horizontal strip
represents the results for the database (or multiple databases in
Fig. 3) with a given model chemistry. Thin vertical lines plot
the error in interaction energy (kcal/mol) for each member of
the database in either the underbound (right of the zero-error
line) or overbound (left of the zero-error line) sector of the
chart. Individual quantities lying beyond the range of the graph
are omitted without annotation. The vertical lines are colored
according to SAPT decomposition (vide infra Sec. III A);
typically the member is red if hydrogen-bonded or blue if
dispersion-bound. A black rectangular marker indicates the
MAE over all the databases, with its position being fixed in
the “overbound” sector of the graph for ease of comparison
to the zero line, regardless of the preponderance of individual
subset markings.

An Iowa plot (e.g., Fig. 4) also depicts the performance of
a given model chemistry for an entire database, albeit only for
databases composed of inter-residue interactions. The model
chemistry error for each database member is depicted by a
color scale, where intensity of green reflects the degree to
which the system is underbound, intensity of purple reflects
the degree to which the system is overbound, white reflects
no error, and intensities are saturated at ±1.0 kcal/mol. The
colored squares for the subset of database members drawn
from contacts between two given amino acids are tiled to
form a larger square (blank slots are left when subset is not
a square number). Amalgamated squares are arranged in a
20 × 20 array indexed by amino acids ordered roughly by
polarity. The resulting plot is symmetric across a diagonal axis
(in information if not, strictly, visually), easily examined by
subsets of interactions (e.g., anionic or polar/aromatic), and,
since an individual database member’s square is depicted as
larger or smaller depending on the frequency of that interac-
tion type (i.e., PRO/TRP) in the database, resembles an aerial
view of farmland in the American Midwest. Together, thread
and Iowa plots provide a good visual representation of the per-
formance of a model chemistry for a protein-based database.
Where thread plots require comparisons between several to

TABLE II. Interaction energy (kcal/mol) MAE statistics by force-field and semi-empirical methods.

aSSI MAE (dark by 1.0 kcal/mol) for subsets in residue classes cation, anion, polar, aliphatic, and aromatic (L to R).
bSSI Errors with respect to benchmark within±4.0 kcal/mol. Guide lines are at 0.0, 0.3, 1.0, and 4.0 overbound (�) and underbound
(+).
cTotal database.
dCharged block: union of +/+, +/�, �/�.
ePolar-containing: union of +/pl, �/pl, pl/pl, pl/al, pl/ar.
fNonpolar block: union of al/al, al/ar, ar/ar.
gMissing 1 of 230 interactions.93

hMissing 1 of 1696 interactions.93,94

iMissing 5 of 3380 interactions.93,94

jMissing 2 of 230 interactions.94
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TABLE III. Interaction energy (kcal/mol) MAE statistics by wavefunction methods, CP-corrected.

aSSI MAE (dark by 1.0 kcal/mol) for subsets in residue classes cation, anion, polar, aliphatic, and aromatic (L to R).
bSSI Errors with respect to benchmark within±4.0 kcal/mol. Guide lines are at 0.0, 0.3, 1.0, and 4.0 overbound (�) and underbound
(+).
cTotal database.
dCharged block: union of +/+, +/�, �/�.
ePolar-containing: union of +/pl, �/pl, pl/pl, pl/al, pl/ar.
fNonpolar block: union of al/al, al/ar, ar/ar.

reveal subset differences, Iowa plots show subsets side-by-
side. Where thread plots obscure database member identity
except as thread color, Iowa plots sort by residue contacts.
Where Iowa plots obscure the worst outliers by saturating the
color scale at ±1.0 kcal/mol, thread plots show the full error
range.

III. RESULTS AND DISCUSSION
A. SAPT components

SAPT decompositions of fragment interactions from each
of the BFDb databases are shown as ternary representations
in Figs. 2(a)–2(d). SSI and BBI computations are SAPT2+/

aug-cc-pVDZ,92 though ternary representations are particu-
larly insensitive to SAPT level of theory.61 In Fig. 2, the
position of a database member reflects the relative contribu-
tions of its three attractive physical components (electrostat-
ics, induction, and dispersion), and color reflects the relative
contributions of its electrostatics and dispersion components.
This color is used in Figs. 1(c), 3, 6(c), and 6(d) and Tables
II–IV (rightmost column), as it provides a quick visual dis-
tinction between polar/hydrogen-bonded complexes in red and
nonpolar/dispersion-dominated complexes in blue. For BBI
in Fig. 2(d), the two binding motifs of backbone-backbone
interactions, single hydrogen-bonded (SHB) and unaligned
(UA), are apparent in the separate clusters. In contrast, the
SSI database in Fig. 2(c) spans a significant fraction of the
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TABLE IV. Interaction energy (kcal/mol) MAE statistics by DFT methods.

aSSI MAE (dark by 1.0 kcal/mol) for subsets in residue classes cation, anion, polar, aliphatic, and aromatic (L to R).
bSSI Errors with respect to benchmark within±4.0 kcal/mol. Guide lines are at 0.0, 0.3, 1.0, and 4.0 overbound (�) and underbound
(+).
cTotal database.
dCharged block: union of +/+, +/�, �/�.
ePolar-containing: union of +/pl, �/pl, pl/pl, pl/al, pl/ar.
fNonpolar block: union of al/al, al/ar, ar/ar.
gMissing 2–7 of 230 interactions.95

hMissing 2–7 of 3380 interactions.95

space of noncovalent interactions. This is especially clear in
comparison with a general-purpose organic database such as
S22, even extended to dissociation curves by S22x5, in Fig.
2(e). Though sharing many binding motifs with S22, SSI
is far more comprehensive through its sampling of a large
number of interactions and its inclusion of charged systems
(which tend to have a stronger induction component) and non-
equilibrium systems (which often have a repulsive electrostat-
ics component).

B. Modeling performance

The BBI and SSI databases have been surveyed by a broad
range of approaches to molecular modeling, from force-fields
to coupled-cluster wavefunction theory. Web portal access to
the full results by individual bimolecular complex is discussed
in Sec. III D. Full model chemistry summary results (includ-
ing most of the numbers quoted in the discussion below) are
reported in the supplementary material. Abridged (by model

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-025791
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FIG. 4. Performance of [(a)–(e)] force field and semiempirical, [(f)–(k)] density functional, and (continuing in Fig. 5) [(l)–(p)] wavefunction methods.

chemistries and statistics reported) results are given in Table II
(FF/SE), Table III (WFN), and Table IV (DFT). Summary
Iowa plots for SSI with all force-field and semiempirical
methods and selected DFT and wavefunction methods are
presented in Figs. 4 and 5. Since more intense colors reflect
larger errors with respect to the benchmark, it is clear from
Figs. 4 and 5 that the expected progression in accuracy from
force-field [(a) and (b)], to semi-empirical [(c)–(e)], to quan-
tum chemical [(f)–(o)], to benchmark (p) holds. Iowa plots
are not useful for BBI since the identity of the sidechain

has little to do with the nature of the backbone fragment
interaction.

It is helpful to discuss subsets of NCI binding motifs, and a
convenient surrogate within SSI is amino acid sidechain clas-
sification. (Note that this surrogate is not rigorous since the
current fragmentation procedure may truncate the residue’s
“characteristic” functional group.) This work uses + -charged
residues (ARG and LYS), � -charged residues (ASP and GLU),
polar residues (SER, THR, ASN and GLN), aliphatic nonpo-
lar residues (ALA, VAL, ILE, LEU and PRO), and aromatic
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FIG. 5. Continuing from Fig. 4, [(l)–(p)] performance of wavefunction
methods.

nonpolar residues [PHE, TYR, HIE (neutral form with hydro-
gen at epsilon N), and TRP], with the remainder unclassified

[CYS, GLY (absent since sidechain is trivial), and MET]. Des-
ignations can be made for subsets of interactions: pl, where
one monomer is polar; �/al, where one monomer is aliphatic
and the other negatively charged (intersection of al and �);
the nonpolar block (union of al/al, ar/ar, and al/ar); and the
charged block (union of +/+, �/�, and +/�). These five pri-
mary classes (+, �, pl, al, and ar) form the axes of the small
plot in the “Iowa” column of Tables II–IV which illustrates the
subset MAE of the 15 intersections (e.g., the upperrightmost
square is +/ar); see Fig. S-2 of the supplementary material for a
more explicit mapping. Meanwhile, BBI is discussed in terms
of single hydrogen bond (SHB) and unaligned (UA) subsets
determined by SAPT classification. Every number in Sec. III B
and Tables II–IV, unless explicitly labeled otherwise, refers to
an overall or subset MAE in kcal/mol. Note that the aver-
age IE varies considerably between contact types (see Tables
S-3 and S-4 for figures of the supplementary material), with
subset mean IE ranging from �73 to +69 kcal/mol. Naturally,
the largest absolute errors (for ions) accompany the largest
IE.

1. Force-fields and semi-empirical

Figure 4 shows strong colors for force-fields (a) GAFF
and (b) CGenFF and semi-empirical (c) AM1 and (d) PM6-
DH2, indicating large, widespread errors. Partially mitigat-
ing this assessment, which references in vacuo IE, is that
force field parameterization roughly takes into account sol-
vation by water. Nevertheless, large errors indicate that sig-
nificant improvement in GAFF is possible. GAFF is at its
best for the nonpolar block and other non-anion aliphat-
ics (0.22–0.67), while the remaining BBI and SSI subsets
have MAE >1, leading to overall 5.48 and 2.72, respectively.
Overbinding of anions is the force field’s greatest weak-
ness, yielding 15.24 for +/� and 94.24 for �/�. CGenFF
does considerably better in overall statistics (0.51 for BBI
and 1.30 for SSI). In addition to having less extreme out-
lier subsets (6.92 for +/� and 7.94 for �/�; generally under-
binding), non-charged polar and SHB join the GAFF good
performers as reasonably well-treated, leading to 0.22–0.84
for the polar/nonpolar block (+/al also) and 0.13 for al/al
itself.

The semiempirical AM1 is almost uniformly underbind-
ing, as seen from Fig. 4(c), where the only pale region is al/al
at 0.50. That its overall BBI/SSI at 4.04/2.54 are comparable
to GAFF is due to significant improvement in �/� to 3.07 since
very many of the subsets, especially nonpolar-containing, are
treated worse by AM1 than by either force field. PM6-DH2
yields significant errors for anions, +/pl, and UA (3.63 for +/�,
others 0.95–1.45) but otherwise (<0.7) is practicable over wide
regions of NCI space at low cost, returning overall 0.70 for
BBI and 0.65 for SSI. Its best performance is for the same
nonpolar block and non-anion aliphatics (0.17–0.34) at which
GAFF succeeded (though roughly 40% better). PBEh-3c in
Fig. 4(e), though properly a DFT method, is discussed here as
it is highly prescriptive and seeks (and succeeds at 0.46/0.41
overall BBI/SSI) to provide decent accuracy at low cost. Its
weakness is � (excepting �/al), where it actually does worse
than PM6-DH2 for �/�. Otherwise, those methods compare
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FIG. 6. Representative subsets of BBI
and SSI. The SSI500, SSI100, and
BBI25 subsets are shown in relation
to their parent databases in size (a),
in breadth of SAPT range (d), and in
error range and distribution for a specific
model chemistry [PBE0-D3(BJ)/aDZ-
CP] (b) and (c).

very much in favor of the former, with ten subsets’ error
reduced to at least half. Apart from the already described �

subsets, all but SHB and +/pl have MAE ≤ 0.30.

2. SAPT and wavefunction

One SAPT, 33 MP2-level, and 12 post-MP2 model
chemistries are assessed. SAPT2+/aDZ (a SAPT Pauling point
in Ref. 61) as a method itself [Fig. 5(o)] is very good for
aliphatic interactions, with BBI UA and SSI pl/al, al/al, al/ar
having ≤0.06. Its interactions involving anions (0.43; gener-
ally overbinding), particularly with other anions (1.29), are
a clear shortcoming. The bronze standard MP2C-F12/aDZ
in Fig. 5(p) (and its co-standard47 MP2C/[aTQZ; δ:aDZ]36)
has greatest discrepancy from the (silver) reference for �/�
and +/� in terms of the absolute error (MAE 0.32–0.43,
though MA%E within 1.3%). The MP2 basis set limit—MP2-
F12/aDZ and MP2/aTQZ [Fig. 4(l)]—equals or surpasses
bronze in performance for pl and al (0.04–0.14) and anion
complexes (0.07–0.33), always excepting combinations with
ar, though the last reflects weakness in bronze as well. Aro-
matics (ar) are handled very poorly (ar/ar in particular ≈0.7
as expected96 for MP2/CBS) such that BBI, containing exclu-
sively polar and non-polarizable dispersion interactions, has
overall MAE 0.10 (half that of bronze) whereas SSI with
abundant π/π contacts has overall ≈0.21 (double that of
bronze).

The basis-set convergence behavior of MP2 variants (con-
vergence analysis excludes the un-augmented QZ basis) is
best seen in Table S-7 or S-21 of the supplementary material.
For MP2 itself, aliphatic and +/+ are converged by aTZ and
polar by aDTZ, all to ≤0.15, excepting combinations with
ar and �/pl that converges slower. Within the charged block,
subsets �/� and +/� converge to ≈0.3 by aTQZ. Not unex-
pectedly, aromatic interactions are a weakness, particularly
+/ar and ar/ar (0.33–0.73 for ≥aTZ) which get worse with

respect to basis treatment, particularly for extrapolations. For
SCS-MP2, the nonpolar block does not improve beyond≈0.45
by aDTZ. Otherwise the method is generally poor (0.5–3.0,
including BBI). For SCS(N)-MP2, aromatic interactions not
involving anions are quite good by aTZ as is SHB (0.11–0.31),
while other subsets do no better than 0.3–0.5 and UA and
�/� are poor (>0.6). For SCS(MI)-MP2, ar/ar converge by
aDTZ (0.16) and �/� is universally poor (>0.8), but otherwise
aTZ is the best basis choice [Fig. 5(m)], yielding all subsets
(excepting �/�) 0.10–0.37 and overall BBI 0.15 and SSI 0.22.
Considering the ar/ar high-error hotspot of converged MP2
and the �/� hotspot of every other MP2-based model chem-
istry, DW-MP2 is the only method to present an even error
level across binding motifs, as shown by uniform color in the
Iowa column of Table III for ≥aTZ. Among these, extrap-
olated basis treatments are the best, with overall BBI/SSI
0.42/0.37 for aDTZ [Fig. 5(n)] and 0.32/0.35 for aTQZ. While
the �/� subset is challenging even for ≥ augmented-triple-
ζ (apart from MP2 and DW-MP2 at 0.3–0.5, methods yield
0.8–1.4), QZ at 2.2–3.0 shows lack of diffuse functions to be
far worse.

3. DFT

Twelve density functionals are assessed that lead to 244
model chemistries after basis set (aDZ, aTZ, and QZVP),
BSSE treatment (unCP and CP), and dispersion [None, D2,
D3, D3(BJ), D3M, and D3M(BJ)] combinatorics. Generaliza-
tions about a functional consider only the four D3 variants
unless otherwise specified. “D3” itself means the original
zero-damping variant. Similarly, when the shorthand ≥ is
used with basis-BSSE treatments, the underlying ordering is
aDZ-unCP, aDZ-CP, aTZ-unCP, aTZ-CP, QZVP-unCP, and
QZVP-CP.

Considering all DFT model chemistries mingled together,
DFT at its best rivals the benchmark error tolerance for certain
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NCI motifs. In particular, all BBI subsets and amongst SSI all
al, non-anionic ar, pl/pl, and +/+ subsets have the best MAE,
0.03–0.07 kcal/mol. At the other end of the gamut, �/� con-
tacts are such a challenge that best is 0.15 and only 19% of
(DFT) model chemistries have MAE <0.5. Of the remaining,
anion subsets (+/�, �/pl, and �/ar) and +/pl have 0.09–0.14 at
best (only 39% <0.5 for +/�). The best result for BBI over-
all is 0.05 and for SSI overall is 0.08. In discussions below
of particular model chemistries, the phrase “among the best
DFT” means that the MAE for the subset in question is within
0.05 (0.10 for the charged block, where IE are so much greater
in magnitude) of the best value listed above among the 244
DFT model chemistries. Most subsets have plenty of good
performers by absolute error, even outside the “best” label-
ing, but �/� is so challenging that many rating “best �/�” are
overall poor performers, with anions their sole strong point;
onlyωB97M-V and certain B3LYP- and B2PLYP-D3 variants,
all unCP with aTZ, incorporate good anion and good general
results.

DFT success is unsystematic—a rung 4 functional is not
always better than a rung 2, a QZVP basis is not reliably better
than an aDZ, D3(BJ) is not assuredly better than D2 (though it
almost always is and any D is always better than None), and CP
is not necessarily better than unCP. For example, overall SSI
averaged for all QZVP-unCP is 0.23 vs. 0.19 for all aDZ-CP
and the respective best for both is ≤0.12, yet neither best func-
tional is uncommonly good upon basis-BSSE exchange with
the other. Thus, the best DFT choice depends on the chemical
system; the following discussion and elaborate tables in the
supplementary material provide some guidance.

Among the simplest functionals (GGAs), aDZ and QZVP
results are available for all, while PBE and B97 analyses addi-
tionally covers aTZ. PBE always has MAE >0.8 for at least
one of �/� and +/�, making its overall utility low. Nevertheless,
D3(BJ)-CP obtains satisfactory results, with aDZ and aTZ best,
producing overall (0.21–0.23) and subsets (0.15–0.45, except-
ing �/�). Refitting the damping function39 improves results for
nearly all subsets so that PBE-D3M(BJ) lower bounds decline
to 0.19 overall and 0.11 subset over the same aDZ and aTZ
with CP. For BP86, despite occasional good figures for al/al,
al, and UA, poor performance for �/� and +/� and mediocre
for other subsets makes BP86 unrecommendable. Refitting the
dispersion damping function improves overall SSI by 0.04 on
average. BLYP does quite well for the nonpolar block with
basis set treatments ≥aDZ-CP, especially D3(BJ) at 0.08–0.18
(among the best DFT for al/ar) and 0.13–0.28 for UA in BBI,
yielding 0.19–0.21 for SSI overall. The refit D3M(BJ) addi-
tionally merits best DFT labels for pl/al and al/al. Yet �/� and
+/� are so bad (>0.46) that BLYP is not recommended in gen-
eral. B97 similarly does well for the nonpolar block, +/+, and
UA at ≥aDZ-CP, particularly with D3 at 0.10–0.23 [and, after
refitting, D3M(BJ) at 0.03–0.22], leading to 0.21–0.26 (0.17–
0.20) for overall SSI. Despite its promise for conventional
organic NCI, certain charged and polar subsets (SHB, +/�,
�/�, �/pl, and pl/pl) have substantial errors (often >0.5) even
at the highest basis treatments; these are computed much better
at aDZ-unCP, suggesting an unbalanced parameterization.

As the functionals’ general habits for NCI are
known,38,77,97 M05-2X is computed only with aDZ and

ωB97X-D, ωB97X-V, and ωB97M-V only with aTZ. For
M05-2X, aDZ-unCP [Fig. 4(f)] is remarkably good at over-
all BBI 0.12 and SSI 0.18. Apart from �/� at 0.86, subsets
are 0.10–0.31, and SHB, +/+, +/� are among the best DFT. It
should be noted that other studies24,97,98 have found this func-
tional weak at non-equilibrium geometries, especially short-
range (the PDB contact identification procedure precludes
long-range NCI in BBI/SSI). With counterpoise correction,
M05-2X aDZ-CP is uniformly bad, having systems strongly
skewed toward underbound and only certain pl and al subsets
<0.5. For ωB97X-D, unCP is better for SHB, �, pl/pl, while
CP is better for UA and the remainder. Both are poor for �/�
(≈1.0), weak for +/+, +/ar, �/ar (0.37–0.57), and middling for
other SSI (0.18–0.39), averaging to about the same: unCP at
0.16/0.30 BBI/SSI and CP at 0.26/0.25. Although expensive,
ωB97X-V is among the best and most consistent functionals
examined. For unCP [Fig. 4(g)], all subsets (excepting �/� at
0.58) are 0.03–0.23 and all of those but +/ar (0.15) and ar/ar
(0.11) are among the best of DFT. CP in comparison computes
most of the SSI subsets slightly worse, while BBI subsets are
considerably worse. Overall statistics are 0.07/0.09 BBI/SSI
for unCP and 0.21/0.12 for CP. More expensive still due to the
kinetic energy density dependence and larger grid, ωB97M-
V with aTZ-unCP in Fig. 4(h) gives good performance for
the greatest weakness ofωB97X-V— �/� at 0.24—while also
improving �, pl/pl, and BBI subsets by up to 0.09. In turn,
its own weakness is aromatic systems, for which subset val-
ues are 0.02–0.06 worse (excepting �/ar as previous) than the
non-meta functional. The resulting overall metrics are about
the same at 0.05/0.10 BBI/SSI. CP likewise is comparable or
worse than unCP for all but +/ar.

Basis sets aDZ and QZVP are available for others in
the PBE family. For PBE0, aDZ-unCP is remarkably even-
handed with D2. Though no subset excels (0.31–0.67), the
worst (+/�) is better than the worst of M05-2X/aDZ-unCP
(�/� at 0.86). For ≥aDZ-CP, all binding motifs except charged
interacting with �, pl, or ar perform well, especially using
CP and D3(BJ), D3M, or D3M(BJ). By QZVP, +/� and �/�
are quite bad, so D3M(BJ) with aDZ-CP is the optimal PBE0
model chemistry [Fig. 4(i)], producing 0.08 BBI and 0.13 SSI
which are among the best DFT overall as well as for subsets
SHB, UA, +/+, most al, and non-ionic ar, despite its weakness
at �/� (0.58). ωPBE is best with D3 or D3M, and ≥aDZ-CP
yields overall BBI 0.19–0.33 (SHB and UA generally under-
performing for this functional) and SSI 0.14–0.16. Although
the usual weakness of �/� (especially severe at ≥1.4) and the
particular weakness of �/ar (0.40–0.52) are present, strengths
(0.03–0.21) include the nonpolar block, al, and certain addi-
tional cation (+/+ and +/pl) subsets, many of which are among
the best DFT. The performance of aDZ-CP is nearly identi-
cal to QZVP-CP, and QZVP-unCP is somewhat superior to
both.

For B3LYP, basis treatments ≥aDZ-CP are roughly equal
and quite good (excluding D3 with unCP and D3M in gen-
eral) overall (0.10–0.20), but aDZ-CP and all aTZ avoid the
severe �/� and +/� errors that arise by QZVP. D3/D3M is a
bright spot for �/� (and anions in general), producing statis-
tics at least 0.15 lower than D3(BJ)/D3M(BJ) counterparts and
achieving 0.23–0.25 with aTZ-unCP, which is among the best
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DFT (actually aDZ-unCP earns this rating with D3M, but as its
sole advantage). However, at the optimal aDZ-CP treatment,
all subsets but SHB and � are treated better by D3M(BJ) [Fig.
4(j); 0.03–0.22] than by D3 (0.11–0.32), so the choice depends
on the targeted NCI. D3 has �/� at 0.41, SHB and �/al among
the best DFT, and overall 0.13/0.15 BBI/SSI, while D3M(BJ)
has larger �/� at 0.55 yet many aliphatic and aromatic subsets
(pl/al, pl/ar, al/al, al/ar, ar/ar, and overall) among the best DFT,
and overall 0.13/0.11 BBI/SSI.

B2PLYP at ≥aDZ-CP performs creditably (overall SSI
0.12–0.27) among non-refitted -D, and with D2 frequently
as good as D3 and D3(BJ) (D2 aTZ-CP overall BBI/SSI
0.21/0.13, having most subsets <0.25, many among the best
DFT). For good anion performance (for once including �/�),
aTZ-unCP with any un-refitted -D treatment is to be recom-
mended (overall 0.14–0.27), though D3 is best, producing � at
0.06–0.21, though with attendant poor (0.17–0.35) aromatic
results. QZVP-unCP is notably worse for anions (especially
+/�, �/�, �/pl) but otherwise good (all subsets 0.04–0.25).
Dispersion refitting yielded excellent CP functionals, the best
of which is D3M/aTZ-CP [Fig. 4(k)], for which every sub-
set (excepting �/� at 0.37 and �/ar at 0.18) is either <0.15 or
among the best DFT. Less costly, D3M/aDZ-CP also maintains
(�/� at 0.50 excepted) all but SHB and non-�/al anion subsets
within <0.15 or among the best DFT. Their weaknesses are
UA and certain aromatics (+/ar and ar/ar) for aTZ (0.11–0.13)
and SHB and anions for aDZ (0.16–0.31), but their overall
BBI/SSI figures show aTZ (0.06/0.08) and aDZ (0.13/0.09) to
be outstanding performers.

4. Reappraisals

As BBI and SSI survey the space of NCI more extensively
than earlier works and partition into more subsets, it is worth-
while to compare results and recommendations. From several
databases comprising 3547 systems, Mardirossian and Head-
Gordon reported RMSE for B97-D3(BJ) (1.73 kcal/mol),
ωB97X-V (0.63), and ωB97M-V (0.49) across their subset
of difficult NCI with unCP def2-QZVPPD.38 This relative
ordering, the disappointing B97-D, and the excellent perfor-
mance of the nonlocal dispersion functional is consistent with
results in this work, although this work also finds subsets
where X-V outperforms M-V. Goerigk et al. evaluate the S66
and S66x8 databases using unCP def2-QZVP, yielding M05-
2X (0.58 MAE kcal/mol for the former), PBE-D3(BJ) (0.40),
B97-D3(BJ) (0.29), B3LYP-D3(BJ) (0.28), B2PLYP-D3(BJ)
(0.21), BLYP-D3(BJ) (0.19), and ωPBE-D3(BJ) (0.19) for
DFT and SCS-MP2 < MP2 < SCS(MI)-MP2 ∼ DW-MP2
for MP2-level WFN, where inequalities refer to performance
judged by the MAE.98 Such figures and ordering are not unlike
what the present work finds for a conventional binding motif
like pl, but considerably larger and considerably smaller MAEs
are possible across the full diversity of SSI. In Hobza and co-
workers’ survey of PDB contacts,35 they computed B3LYP-
and BLYP-D3/QZVP-CP for some general categories of inter-
action, e.g., anion, neutral, polar, and aromatic. Loose mapping
of subsets to the current project yields differences in the MAE
usually well within 0.1 kcal/mol, though they find a much
greater difference between B3LYP and BLYP performance
(in the former’s favor) and less extreme ion subset errors.

Regarding earlier recommendations from some of the authors
based upon S22, NBC10, HBC6, and HSG databases,97 the fol-
lowing (overlapping) functionals were recommended for gen-
eral NCI with aTZ-unCP: B97-D3 > B3LYP-D3 >ωB97X-D.
While the latter two are, in this work, satisfactory functionals,
B97-D does badly for several subsets, and the development of
both dispersion (D3M) and functional family (ωB97) means
that several attractive alternatives are available. Regarding
wavefunction recommendations, DW-MP2 fulfills its role of
balanced treatment of NCI subsets, if undistinguished overall,
while SCS(MI)-MP2 parameterization is not able to cope with
some of the new subsets (�/� and �/ar). For SAPT2+/aDZ, +/+
and +/� errors are much higher than predicted from previous
work,61 while other subsets (UA, al/al, and al/ar) are as or
better than expected.

C. Representative subsets

Since method development often involves separate fitting
and validation stages and also since SSI can be unwieldy
in its entirety, subsets of the BBI and SSI databases have
been defined. These are BBI25, SSI100, and SSI500 (mid-
dle is a subset of last) shown in Fig. 6. Selection was made
by generating dozens of random subsets from the whole,
winnowing by minimizing the difference in the MAE and
maximum error between the whole and the subset for sev-
eral wavefunction and DFT model chemistries, and choosing
one that is representative and diverse as gauged by ternary
and Iowa plots. Gauges are shown in Fig. 6, and statistics for
these subsets are reported for all model chemistries in Tables
S-5–S-19 of the supplementary material. Among the nearly
300 DFT and wavefunction model chemistries, BBI25 and
SSI500 differ by no more than 0.03 kcal/mol in the MAE from
their respective whole databases. Force fields and semiempir-
ical methods are more variable with MAE differences up to
0.11 kcal/mol. The much smaller SSI100 subset exhibits cor-
respondingly larger variance: MAE within 0.05, 0.11, and
0.19 kcal/mol for wavefunction, DFT, and FF/SE classes,
respectively. Naturally, the statistical subsets are less effec-
tive models of the whole when considering individual binding
motif subsets.

D. Web portal

This work, which explores dozens of model chemistries
for a database with thousands of members, has yielded large
quantities of data (>1 × 106 IE) whose usefulness is in en
masse comparison rather than in simple look-up. Additionally,
considerable metadata are associated with both the databases
(charge, multiplicity, geometry, subset classification, SAPT
decomposition, etc.) and the computational approach (density-
fitting, counterpoise correction, dispersion variant, basis treat-
ment, etc.). The sizeable new infrastructure required to man-
age and use the BFDb databases is encoded into a Python
module, Quantum Chemistry Common Driver and Databases
(QCDB).99 The BFDb project is the first major (second
actual39) use of the database features of QCDB. These tools
are made available to the scientific community through the
BFDb portal at http://vergil.chemistry.gatech.edu/bfdb/. The
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FIG. 7. BFDb web portal at http://vergil.chemistry.gatech.edu/bfdb. Screen shots sample website contents for a given bimolecular complex (left) and database
model chemistry (right).

portal consists of several pages for different stages of research.
For a selected model chemistry, a page [Fig. 7(right)] presents
its histogram and thread error distribution and statistics with
respect to a reference, as well as Iowa plots if relevant, all
restrictable by subset. For a selected database member, a
page [Fig. 7(left)] presents its manipulatable geometry, SAPT
decomposition, and tabular and thread error distribution for
all available model chemistries. For a selected database, a
page generates thread error distributions for any number of
model chemistries or subsets, as configurable by the user.
Whenever possible, DOI references to the published litera-
ture are supplied. At a further level of interaction, any user can
upload new interaction energy datasets to the portal, which
can then be analyzed with all the usual tools and alongside
preloaded modeling results. Additionally, input geometries
for a number of popular quantum chemistry packages can be
produced.

The flexibility of the BFDb portal is possible because all
pages and figures are generated on-the-fly from the QCDB
Python module storing the reaction energy results and facilitat-
ing chemical database manipulations. Throughout, generated
plots and geometry and input files can be downloaded in differ-
ent formats. Indeed, Figs. 3–5 and parts of Fig. 6 are composed
of figures downloaded from the portal and slightly marked
up. Additionally, the geometries and reference IE of SSI and
BBI are available in Psi4 through the database() feature
to simplify job execution and result collection. Finally, for
those preferring command-line access, a Jupyter100 notebook
sufficient to produce components of all tables and figures is
included in the supplementary material. Currently loaded onto
the BFDb portal are computational chemistry results from this
work and Refs. 47, 61, 97, and 101 encompassing databases
from BFDb (BBI, HSG, and SSI) and others (A24, HBC6,
NBC10, and S22).

IV. SUMMARY AND CONCLUSIONS

This work has harvested distinct backbone/backbone
and sidechain/sidechain intermolecular contact geometries
from the Protein DataBank (PDB) and collected them along-
side high-quality DW-CCSD(T**)-F12/aug-cc-pV(D+d)Z ref-
erence interaction energies into two chemical databases. The
resulting SSI and BBI manifest several contrasts in construc-
tion compared to conventional organic databases. Namely,
instead of near-equilibrium or scanned-coordinate geome-
tries, BFDb collects >3000 bifragment contacts directly from
biological systems. Instead of curating a limited number of
“representative” complexes, BFDb samples many variations
on a NCI binding motif. Instead of assigning broad clas-
sifications, BFDb provides SAPT decompositions and sub-
setting by residue/residue contacts. Instead of exerting great
effort on a few heroic gold-standard computations, BFDb
uses a tractable but accurate silver-standard coupled-cluster
benchmark.

Having defined the core geometries and reference ener-
gies, a number of efforts have been made to package BFDb for
the computational community. Dozens of model chemistries
from all classes of computational chemistry are assessed. Sub-
sets of convenient size for any application have been assem-
bled to reflect the statistics and composition of the whole.
A web portal is available to view error statistics, outliers,
and visualizations by database and NCI class for very many
model chemistries and references. Future work will look at the
effect of geometry optimization and larger datasets that have
a broader range of interaction types.

Surveying nearly 300 model chemistries necessitates only
broad analysis, so those seeking advice for a known system
type are best served by running a finger down the Iowa col-
umn of Tables II–IV [or their expanded (by model chemistry)

http://vergil.chemistry.gatech.edu/bfdb
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-025791
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and far more detailed (by binding motif subset) counterparts
in the supplementary material]. Nevertheless, conclusions as
to generally commendable functionals follow. Unsurprisingly,
the balanced and successful performers were among those
encoding the most physics in the most expensive methods: the
double-hybrids and the non-local dispersion functionals. In no
particular order, the five best all-around model chemistries are
B2PLYP-D3M/aTZ-CP, B3LYP-D3M(BJ)/aDZ-CP, PBE0-
D3M(BJ)/aDZ-CP, ωB97M-V/aTZ-unCP, ωB97X-V/aTZ-
unCP, with overall MAE 0.05–0.13 kcal/mol. Best perfor-
mance by one of the previous model chemistries taking
computational cost into account goes to B3LYP-D3M(BJ)/
aDZ-CP; best performance by a GGA goes to BLYP-
D3M/aDZ-CP; by an unCP GGA, PBE-D3M/aTZ-unCP; by
an unCP, ωB97X-V/aTZ-unCP; by an aDZ, B2PLYP-D3M;
by an unCP aDZ, . . . is not recommended; by an unCP aTZ
without VV10, B2PLYP-D3(BJ)/aTZ-unCP; for the contacts
most difficult to compute, �/�, B2PLYP-D3M/aTZ-unCP; for
ar/ar contacts, B2PLYP-D3M or -D3M(BJ)/aDZ-CP; for the
most difficult to get right simultaneously, anion and aro-
matic,ωB97M-V/aTZ-unCP and B2PLYP-D3M/aTZ-CP; for
contacts classified as electrostatically dominated by SAPT,
ωB97M-V/aTZ-unCP; for contacts classified as dispersion
dominated by SAPT, B2PLYP-D3M/aDZ-CP; for contacts
classified as mixed influence by SAPT, B2PLYP-D3M/aTZ-
CP. Best performance by a method with formal scaling
less than O(N3), DH2-PM6; by an MP2 derivative, DW-
MP2/aDTZ-CP; by an MP2 derivative without contrivance,
MP2/aDTZ-CP; by a method available in Psi4 1.0, B2PLYP-
D3M/aTZ-CP; by a method available in Psi4 1.2, ωB97M-V/
aTZ-unCP.

SUPPLEMENTARY MATERIAL

See supplementary material for Table S-1 defining sum-
mary error statistics; Fig. S-2 illustrating how to read Iowa
plots; Tables S-3 and S-4 containing summary statistics for
BBI/SSI IE ranges over various subsets; Tables S-5–S-19
extending manuscript Tables II–IV to all model chemistries
surveyed; and Tables S-20–S-39 presenting MAE statistics
for all amino acid contact subsets. A Jupyter notebook to
access the data and instructions for use is present as a separate
file.
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17P. Hobza and J. Řezáč, Chem. Rev. 116, 4911 (2016).
18J. Yin, N. M. Henriksen, D. R. Slochower, M. R. Shirts, M. W. Chiu,

D. L. Mobley, and M. K. Gilson, J. Comput.-Aided Mol. Des. 31, 1 (2017).
19H. A. Carlson, R. D. Smith, K. L. Damm-Ganamet, J. A. Stuckey,

A. Ahmed, M. A. Convery, D. O. Somers, M. Kranz, P. A. Elkins, G. Cui,
C. E. Peishoff, M. H. Lambert, and J. B. Dunbar, J. Chem. Inf. Model. 56,
1063 (2016).

20J. Moult, F. Fidelis, A. Kryshtafovych, T. Schwede, and A. Tramontano,
Proteins: Struct., Funct., Bioinf. 84, 4 (2016).

21B. Monastyrskyy, D. D’Andrea, K. Fidelis, A. Tramontano, and
A. Kryshtafovych, Proteins: Struct., Funct., Bioinf. 84, 131 (2016).

22J. C. Faver, M. L. Benson, X. He, B. P. Roberts, B. Wang, M. S. Marshall,
M. R. Kennedy, C. D. Sherrill, and K. M. Merz, Jr., J. Chem. Theory
Comput. 7, 790 (2011).

23S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, and K. Tanabe, J. Am.
Chem. Soc. 124, 104 (2002).

24C. D. Sherrill, T. Takatani, and E. G. Hohenstein, J. Phys. Chem. A 113,
10146 (2009).
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